46 research outputs found

    Extracting Excitations From Model State Entanglement

    Full text link
    We extend the concept of entanglement spectrum from the geometrical to the particle bipartite partition. We apply this to several Fractional Quantum Hall (FQH) wavefunctions on both sphere and torus geometries to show that this new type of entanglement spectra completely reveals the physics of bulk quasihole excitations. While this is easily understood when a local Hamiltonian for the model state exists, we show that the quasiholes wavefunctions are encoded within the model state even when such a Hamiltonian is not known. As a nontrivial example, we look at Jain's composite fermion states and obtain their quasiholes directly from the model state wavefunction. We reach similar conclusions for wavefunctions described by Jack polynomials.Comment: 5 pages, 7 figures, updated versio

    Real-Space Entanglement Spectrum of Quantum Hall States

    Full text link
    We investigate the entanglement spectra arising from sharp real-space partitions of the system for quantum Hall states. These partitions differ from the previously utilized orbital and particle partitions and reveal complementary aspects of the physics of these topologically ordered systems. We show, by constructing one to one maps to the particle partition entanglement spectra, that the counting of the real-space entanglement spectra levels for different particle number sectors versus their angular momentum along the spatial partition boundary is equal to the counting of states for the system with a number of (unpinned) bulk quasiholes excitations corresponding to the same particle and flux numbers. This proves that, for an ideal model state described by a conformal field theory, the real-space entanglement spectra level counting is bounded by the counting of the conformal field theory edge modes. This bound is known to be saturated in the thermodynamic limit (and at finite sizes for certain states). Numerically analyzing several ideal model states, we find that the real-space entanglement spectra indeed display the edge modes dispersion relations expected from their corresponding conformal field theories. We also numerically find that the real-space entanglement spectra of Coulomb interaction ground states exhibit a series of branches, which we relate to the model state and (above an entanglement gap) to its quasiparticle-quasihole excitations. We also numerically compute the entanglement entropy for the nu=1 integer quantum Hall state with real-space partitions and compare against the analytic prediction. We find that the entanglement entropy indeed scales linearly with the boundary length for large enough systems, but that the attainable system sizes are still too small to provide a reliable extraction of the sub-leading topological entanglement entropy term.Comment: 13 pages, 11 figures; v2: minor corrections and formatting change

    Coupled Atomic Wires in a Synthetic Magnetic Field

    Full text link
    We propose and study systems of coupled atomic wires in a perpendicular synthetic magnetic field as a platform to realize exotic phases of quantum matter. This includes (fractional) quantum Hall states in arrays of many wires inspired by the pioneering work [Kane et al. PRL {\bf{88}}, 036401 (2002)], as well as Meissner phases and Vortex phases in double-wires. With one continuous and one discrete spatial dimension, the proposed setup naturally complements recently realized discrete counterparts, i.e. the Harper-Hofstadter model and the two leg flux ladder, respectively. We present both an in-depth theoretical study and a detailed experimental proposal to make the unique properties of the semi-continuous Harper-Hofstadter model accessible with cold atom experiments. For the minimal setup of a double-wire, we explore how a sub-wavelength spacing of the wires can be implemented. This construction increases the relevant energy scales by at least an order of magnitude compared to ordinary optical lattices, thus rendering subtle many-body phenomena such as Lifshitz transitions in Fermi gases observable in an experimentally realistic parameter regime. For arrays of many wires, we discuss the emergence of Chern bands with readily tunable flatness of the dispersion and show how fractional quantum Hall states can be stabilized in such systems. Using for the creation of optical potentials Laguerre-Gauss beams that carry orbital angular momentum, we detail how the coupled atomic wire setups can be realized in non-planar geometries such as cylinders, discs, and tori

    Series of Abelian and Non-Abelian States in C>1 Fractional Chern Insulators

    Full text link
    We report the observation of a new series of Abelian and non-Abelian topological states in fractional Chern insulators (FCI). The states appear at bosonic filling nu= k/(C+1) (k, C integers) in several lattice models, in fractionally filled bands of Chern numbers C>=1 subject to on-site Hubbard interactions. We show strong evidence that the k=1 series is Abelian while the k>1 series is non-Abelian. The energy spectrum at both groundstate filling and upon the addition of quasiholes shows a low-lying manifold of states whose total degeneracy and counting matches, at the appropriate size, that of the Fractional Quantum Hall (FQH) SU(C) (color) singlet k-clustered states (including Halperin, non-Abelian spin singlet states and their generalizations). The groundstate momenta are correctly predicted by the FQH to FCI lattice folding. However, the counting of FCI states also matches that of a spinless FQH series, preventing a clear identification just from the energy spectrum. The entanglement spectrum lends support to the identification of our states as SU(C) color-singlets but offers new anomalies in the counting for C>1, possibly related to dislocations that call for the development of new counting rules of these topological states.Comment: 12 pages with supplemental material, 20 figures, published versio

    Particle Entanglement Spectra for Quantum Hall states on Lattices

    Get PDF
    We use particle entanglement spectra to characterize bosonic quantum Hall states on lattices, motivated by recent studies of bosonic atoms on optical lattices. Unlike for the related problem of fractional Chern insulators, very good trial wavefunctions are known for fractional quantum Hall states on lattices. We focus on the entanglement spectra for the Laughlin state at Μ=1/2\nu=1/2 for the non-Abelian Moore-Read state at Μ=1\nu=1. We undertake a comparative study of these trial states to the corresponding groundstates of repulsive two-body or three-body contact interactions on the lattice. The magnitude of the entanglement gap is studied as a function of the interaction strength on the lattice, giving insights into the nature of Landau-level mixing. In addition, we compare the performance of the entanglement gap and overlaps with trial wavefunctions as possible indicators for the topological order in the system. We discuss how the entanglement spectra allow to detect competing phases such as a Bose-Einstein condensate.Comment: 12 pages, 9 figure

    Creating a bosonic fractional quantum Hall state by pairing fermions

    Get PDF
    We numerically study the behavior of spin--1/21/2 fermions on a two-dimensional square lattice subject to a uniform magnetic field, where opposite spins interact via an on-site attractive interaction. Starting from the non-interacting case where each spin population is prepared in a quantum Hall state with unity filling, we follow the evolution of the system as the interaction strength is increased. Above a critical value and for sufficiently low flux density, we observe the emergence of a twofold quasidegeneracy accompanied by the opening of an energy gap to the third level. Analysis of the entanglement spectra shows that the gapped ground state is the bosonic 1/21/2 Laughlin state. Our work therefore provides compelling evidence of a topological phase transition from the fermionic quantum Hall state at unity filling to the bosonic Laughlin state at a critical attraction strength

    Bosonic integer quantum Hall effect in optical flux lattices.

    Get PDF
    In two dimensions strongly interacting bosons in a magnetic field can realize a bosonic integer quantum Hall state, the simplest two-dimensional example of a symmetry-protected topological phase. We propose a realistic implementation of this phase using an optical flux lattice. Through exact diagonalization calculations, we show that the system exhibits a clear bulk gap and the topological signature of the bosonic integer quantum Hall state. In particular, the calculation of the many-body Chern number leads to a quantized Hall conductance in agreement with the analytical predictions. We also study the stability of the phase with respect to some of the experimentally relevant parameters

    Interacting bosons in topological optical flux lattices

    Full text link
    An interesting route to the realization of topological Chern bands in ultracold atomic gases is through the use of optical flux lattices. These models differ from the tight-binding real-space lattice models of Chern insulators that are conventionally studied in solid-state contexts. Instead, they involve the coherent coupling of internal atomic (spin) states, and can be viewed as tight-binding models in reciprocal space. By changing the form of the coupling and the number NN of internal spin states, they give rise to Chern bands with controllable Chern number and with nearly flat energy dispersion. We investigate in detail how interactions between bosons occupying these bands can lead to the emergence of fractional quantum Hall states, such as the Laughlin and Moore-Read states. In order to test the experimental realization of these phases, we study their stability with respect to band dispersion and band mixing. We also probe novel topological phases that emerge in these systems when the Chern number is greater than 1.Comment: 14 pages, 19 figure

    Topological d-wave pairing structures in Jain states

    Full text link
    We discuss d-wave topological (broken time reversal symmetry) pairing structures in unpolarized and polarized Jain states. We demonstrate pairing in the Jain spin singlet state by rewriting it in an explicit pairing form, in which we can recognize d-wave weak pairing of underlying quasiparticles - neutral fermions. We find and describe the root configuration of the Jain spin singlet state and its connection with neutral excitations of the Haldane-Rezayi state, and study the transition between these states via exact diagonalization. We find high overlaps with the Jain spin singlet state upon a departure from the hollow core model for which the Haldane-Rezayi state is the exact ground state. Due to a proven algebraic identity we were able to extend the analysis of topological d-wave pairing structures to polarized Jain states and integer quantum Hall states, and discuss its consequences.Comment: 8 page
    corecore